Folding RaCe: a robust method for predicting changes in protein folding rates upon point mutations
نویسندگان
چکیده
MOTIVATION Protein engineering methods are commonly employed to decipher the folding mechanism of proteins and enzymes. However, such experiments are exceedingly time and resource intensive. It would therefore be advantageous to develop a simple computational tool to predict changes in folding rates upon mutations. Such a method should be able to rapidly provide the sequence position and chemical nature to modulate through mutation, to effect a particular change in rate. This can be of importance in protein folding, function or mechanistic studies. RESULTS We have developed a robust knowledge-based methodology to predict the changes in folding rates upon mutations formulated from amino and acid properties using multiple linear regression approach. We benchmarked this method against an experimental database of 790 point mutations from 26 two-state proteins. Mutants were first classified according to secondary structure, accessible surface area and position along the primary sequence. Three prime amino acid features eliciting the best relationship with folding rates change were then shortlisted for each class along with an optimized window length. We obtained a self-consistent mean absolute error of 0.36 s(-1) and a mean Pearson correlation coefficient (PCC) of 0.81. Jack-knife test resulted in a MAE of 0.42 s(-1) and a PCC of 0.73. Moreover, our method highlights the importance of outlier(s) detection and studying their implications in the folding mechanism. AVAILABILITY AND IMPLEMENTATION A web server 'Folding RaCe' has been developed and is available at http://www.iitm.ac.in/bioinfo/proteinfolding/foldingrace.html. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
A Maximum-Caliber Approach to Predicting Perturbed Folding Kinetics Due to Mutations.
We present a maximum-caliber method for inferring transition rates of a Markov state model (MSM) with perturbed equilibrium populations given estimates of state populations and rates for an unperturbed MSM. It is similar in spirit to previous approaches, but given the inclusion of prior information, it is more robust and simple to implement. We examine its performance in simple biased diffusion...
متن کاملPredicting folding free energy changes upon single point mutations
MOTIVATION The folding free energy is an important characteristic of proteins stability and is directly related to protein's wild-type function. The changes of protein's stability due to naturally occurring mutations, missense mutations, are typically causing diseases. Single point mutations made in vitro are frequently used to assess the contribution of given amino acid to the stability of the...
متن کاملPredicting protein stability changes from sequences using support vector machines
MOTIVATION The prediction of protein stability change upon mutations is key to understanding protein folding and misfolding. At present, methods are available to predict stability changes only when the atomic structure of the protein is available. Methods addressing the same task starting from the protein sequence are, however, necessary in order to complete genome annotation, especially in rel...
متن کامل-Value analysis by molecular dynamics simulations of reversible folding
In -value analysis, the effects of mutations on the folding kinetics are compared with the corresponding effects on thermodynamic stability to investigate the structure of the protein-folding transition state (TS). Here, molecular dynamics (MD) simulations (totaling 0.65 ms) have been performed for a large set of single-point mutants of a 20-residue three-stranded antiparallel -sheet peptide. B...
متن کاملSAAFEC: Predicting the Effect of Single Point Mutations on Protein Folding Free Energy Using a Knowledge-Modified MM/PBSA Approach
UNLABELLED Folding free energy is an important biophysical characteristic of proteins that reflects the overall stability of the 3D structure of macromolecules. Changes in the amino acid sequence, naturally occurring or made in vitro, may affect the stability of the corresponding protein and thus could be associated with disease. Several approaches that predict the changes of the folding free e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 31 13 شماره
صفحات -
تاریخ انتشار 2015